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LETTER TO THE EDITOR 

New types of frequency Idependence of hopping conductivity on 
a hierarchical lattice 
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T Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China 
1: Center for Theoretical Physics, Chinese Center of Advanced Science and Technology 
(World Laboratory) Box 8730, Beijing 100080, People‘s Republic of China 

Received 21 October 1992 

Abnracr By a real-space renormalization-group method, we have calculated the dynamic 
hopping conductivity of a one-dimensional hopping system with hierarchically distributed 
transition rates. Our numerical results show that the conductivity can display rather different 
types of low- and high-frequency behaviour as the value of the hierarchical parameter R 
is varied. 

Studies concerning hopping on one-dimensional (ID) systems have shown that the 
distribution of the transition rates is important in establishing the qualitative behaviour 
of the system’s response to an external electric field with frequency o [l, 21. The 
low-frequency expression for AC hopping conductivity u ( w ) ,  which is of great import- 
ance in hopping, is regular for periodic chains, e.g. the real part of the conductivity 
Re[u(o)] - u(0)- o2 as o + 0 for periodic binary chain [l, 21. The expression becomes 
non-analytic when the transition rates are distributed randomly, e.g. Re[u(w)] - u(0) - 
o”’ in the limit w + O  for random binary chain [1,2]. The intermediate case, the 
transition rates being arranged in deterministic aperiodic sequence such as on the 
Fibonacci lattice and the ?’hue-Morse lattice has also been studied [3]. For the ID 
Fibonacci quasiperiodic lattice, the low-frehuency dependence of Re[a(o)] is shown 
to he of the new form w2( 1 - const x In o) as o + 0, which is non-analytic but not 
random-like [2]. For the ID Thue-Morse lattice, it is shown that Re[u(w)] behaves 
similarly to that of the ordinary periodic chain, i.e. Re[a(w)]-a(0)-02 [2]. 
Now a natural question is whether or not the hopping conductivity of a hierarchical 
lattice, which is another type of deterministic aperiodic system and has attracted much 
attention recently (see [4] for a review), will show any different type of frequency 
behaviour. 

The model treated here is similar to that in [3]. Electrons are localized around the 
isoenergetic sites in the lattice, and an electron may hop from one site to either of 
those adjacent. The hopping rate W,, between the sites n and n + 1 is given by 

n=21+1 
n =2‘(21+1) 

where R is a parameter characterizing the hierarchy. The spacings between the adjacent 
sites d. are set to be 1 for simplicity. When a spatially constant electric field E = Eo eiw‘ 
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is applied along the line of the hierarchical lattice, the hopping conductivity is deter- 
mined by taking the spatial average of the current flowing between pairs of adjacent 
sites and can be written as 

X x x  

1 
u=-Zln 

EL 

... x x  x x  

where L is the length of the chain and the 'elementary currents' I., representing the 
thermally averaged rate at which charge is transferred between the nth site and the 
(n+ 1)th or the current flowing between the sites n and n + 1, are the solution of the 
following Miller-Abrahams (MA) equations 

Owing to the 'intlation symmetry' of the system, the above MA equations can be 
solved by a decimation process as in 151. To do so, we divide the hierarchical lattice 
into two sublattices consisting of the odd number sites and the even number sites, 
respectively. Then the MA equations take the more general form 

6 ,  I. = yr. - I + I.+ I + i oEk  , for odd n 
~ . l . = l ~ - , +  yl,+,+iwEh2 for even n (4) 

which can be cast into the same form before and after the decimation procedure. 
Clearly, the original set of MA equations (3) is a special case of (4) with 

( 5 )  

In terms ofthe generalized MA equations (4), the conductivity (2) forthe system becomes 

i o  
U:, 

E. =2f-  k ,  = k ,  = 1 y =  1. 

1 
EL 

u = - I.h, 

where k. takes either k ,  or h2,  dependin4 on whether n is odd or even. Decimating 
all 4n +2 and 4n + 3  sites (marked by crosses in figure 1) and relabelling the remaining 
ones leave us with a new set of equations which is in the same form as the old one, 

R3 

R= I 
... 

Figwe 1. Schematic representation of the hierarchical lattice with a hierarchy of transition 
rates. The dots stand for the isocnergetic atomic sites and the vertical segments represent 
the transition rates between two adjacent sites. Sites with crosses arc decimated during the 
present renormalization scheme. 
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except that the original parameters E., h , ,  h2 and y are renormalized as follows 

h l = ( l + $ h , + % ,  Y h i =  ( I + $ h 2 + 5  Y h,  (7) 

y ' = E t E z - y .  2 

Using (6)  and (7), and after some algebra, we can show that the, conductivity U', 

defined by the value of (6) on the renormalized chain, is given by 

where 

Thus, a straightforward iterative procedure yields 

where the variables h y ) ,  hy) ,  y ( ' )  denote the values of h, ,  h 2 ,  y after i iterations of 
(7) with the initial values (3, and is obtained by replacing in (9), h,, E, ( j  = 1,2) 
and y by hj'), E ) ' )  and y"), respectively. In the following practical calculation, we shall 
study the infinite chain consisting of the periodic repetition of an N-order hierarchical 
chain of length Z N .  Such an N-order approximant to the real hierarchical chain is 
indeed obtained by setting the transition rates (1) with k N to be of the following form 

W,,=RN n=2'(21+1)  with k >  N. (11) 

The real hierarchical lattice itself is regarded as the limit of this N-order approximant 
as N+m. If we start with such an N-order approximant of period Z N ,  then after 
decimating N - 1 times, we are left with a simple periodic chain composed of two 
types of transition rates. The MA equations for such a final chain are given by 

(12) 
E ( N - I ) ~  = y  ( N - ' ) I n - ,  + I,,, +ioEh"-') I IEbi =In-] + y ( N - l ) ~  "+I + i w ~ h $ N - l )  

for odd n 
for even n. 

From (12) it is not di5cult to derive 

I E 2  2 11 (13) u ( N - l )  = !? ( [ h ( N - l )  2 ( N - l ) +  [ h $ N - l ) ] 2 E ( I N - 1 ) +  2 h ! N - l ) h ( N - l ) [  1 + y ( N - l )  
A '  

with 

1 1 E 2  [ 1 + y"-"]*}. (14) A =  ( h " - l ) + h I N - I ) ) ( E ( N - - I )  ( N - 1 ) -  

So by iterating (7) with the initial values ( 5 )  and substituting hj'), sli) and y(')  into 
(9), (IO) and (13), we may obtain numerically the conductivity of an arbitrarily 
high-order approximant to the hierarchical lattice. The results for the real hierarchical 
lattice corresponding to the limit of N + m can be obtained by an extrapolation. 
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The first result coming out of our numerical calculation is that when w+O, we 
have exactly Re[u(w)]+ u(0) = uo with [3] 

Obviously, when R > 1 / 2 ,  Re(u) tends to a finite limit u o = ( 2 R - 1 ) / R  as w + O  and 
N-tar,  while for R <  112, we find Re(u)+O. In order to attest this result, we have 
calculated Re(u) at frequencies as low as in units of W,, where our numerical 
results still cokoborate the analytical result ( 1 5 )  derived from a formal Euctuation 
expansion [3]. 

Next, we study the low-frequency behaviour of Re(u) -uo and Im(u)  for various 
values of R Since our practical numerical calculations are proceeded with finite N, 
we have calculated the conductivity for quite a few values of N to extrapolate the 
small-w dependence of the real hierarchical system. After eliminating the ordinary 
period effect by an extrapolation, we observe the power-law behaviour of the conduo 
tivity at low frequencies for various values of R, i.e. 

Re(u) - u0 - o6 Im(u) - ow (16) 
where the exponents S and 8’ depend on R. To be specific, we shall distinguish the 
following cases: 

(i) For R > 2, we find S = 2 and S ‘ =  1 ,  the conductivity possesses the same small-w 
behaviour as in the binary periodic case 

Re(u)-uo-m2 Im(C7) -m. (17) 
(ii) For 1 < R  < 2 ,  the low-frequency behaviour of Im(u) remains ordinary as in 

the case of R 3 2, while the exponent for the real part of the conductivity S = R, i.e. 

Re( u) - uo - w Im(u) - w. (18) 
Thus, the crossover for a transition from ordinary to anomalous small-w dependence 
of Re( u) - w0 is observed at R = 2. 

(ui) For 1 / 2 < R < 1 ,  we find S = S ’ = 2 R - 1 ,  i.e. 

Re(u) -Uo- wZR-’ h ( u )  - wZR-I.  (19)  
Similarly, a transition of the power-law exponent for Im[u(w)] occurs at R = 1, with 
R = 1 corresponding to W,, = 1 and thus Re(u) = uo = 1 ;  Im(u) = 0. 

(iv) For O < R < 1 / 2 ,  we have uo+O as N+oo from ( 1 5 ) .  The numerical results 
show 6 = 8’. Although we cannot give an explicit expression for the exponents 6 or 
6’ in the context of this paper, we find d&/dR <O,  which is contrary to the case of 
R >  1/2.  

(v) For R = 112, we find S - 6‘-0. However, our numerical results show evidence 
that a logarithmic singularity may exist in the low-frequency behaviour, which is similar 
to the Fibonacci chain [3]. 

Finally we turn to the high-frequency behaviour of Re(u) and Im(u). As in the 
low-frequency case, we also find the ordinary high-frequency dependences Re(u) + 
eonst and Im(u)-w-’. We believe some of these results are due to the period effect. 
Eliminating the period effect by an extrapolation yields the high-frequency results as 
follows: 

(i) For R 2 < 2 ,  the conductivity has the same high-frequency behaviour as in the 
ordinary periodic chain 

Re(u) = m, Im(u) - 0 - I  (20) 
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with 

1 m , = p x  W.=- 
n 

which is consistent with the analytical expression of [2]. 

the case of R2<2, while Im(u) displays an anomalous power-law decay, i.e. 
(ii) For 2 < R Z  <4, the high-frequency behaviour of Re(u) remains ordinary as in 

(22) 
with 

Thus 

Re(u) = m, Im(u) - op 

. 
In R-In 2 

'= InR  ' 

: crossover for a transition from the ordinarv o-' iviour to anomalous 

(iii) For R'>4, both Re(u) and Im(u) display the anomalous power-law growth 
power-law decay behaviour of Im(u) is at R =&. 

Re(u) - w p  Im(u)-wP (24) 

with p given by (23). Clearly a transition for the high w dependence of Re(u) occurs 
at R = 2 .  

(iv) For R = 2, from our numerical results, we conjecture that Re[u(w)] - uo and 
Im[u(o)] may display logarithmic growth as w +a. 

To summarize, we have calculated, at low and high frequencies, the dynamic 
hopping conductivity of a ID system with hierarchically distributed transition rates by 
solving the MA equations using a real space renormalization method. It is found that 
both the low-frequency conductivity and the high-frequency one may display a variety 
of new power-law w dependences, with the power-law exponents dependent on R. As 
the value of R is varied, the power-law exponents have been found to undergo several 
phase transitions. This new type of w behaviour of u(o) is rather different from the 
previous results for tbe Fibonacci and the Thue-Morse aperiodic chains, where the 
small-o dependence of u ( w )  is independent of the diluted parameter WA/ W, associ- 
ated with two different building letters and the large-o behaviour of u( w ) is independent 
of the transition-rate distribution [3,5]. 

One of us (Z Lin) would like to thank Dr X Wang for helpful discussion. The work 
was supported by the National Foundation of Natural Science of China. 
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